Complete Asymptotic Expansion of the Spectral Function of Multidimensional Almost-periodic Schrödinger Operators
نویسنده
چکیده
We prove the complete asymptotic expansion of the spectral function (the integral kernel of the spectral projection) of a Schrödinger operator H = −∆ + b acting in R when the potential b is real and either smooth periodic, or generic quasi-periodic (finite linear combination of exponentials), or belongs to a wide class of almost-periodic functions.
منابع مشابه
Complete Asymptotic Expansion of the Integrated Density of States of Multidimensional Almost-periodic Schrödinger Operators
We prove the complete asymptotic expansion of the integrated density of states of a Schrödinger operator H = −∆+b acting in R when the potential b is either smooth periodic, or generic quasi-periodic (finite linear combination of exponentials), or belongs to a wide class of almost-periodic functions.
متن کاملComplete asymptotic expansion of the inte- grated density of states of multidimensional almost-periodic pseudo-differential operators
We obtain a complete asymptotic expansion of the integrated density of states of operators of the form H = (−∆) + B in R. Here w > 0, and B belongs to a wide class of almost-periodic self-adjoint pseudo-differential operators of order less than 2w. In particular, we obtain such an expansion for magnetic Schrödinger operators with either smooth periodic or generic almost-periodic coefficients. M...
متن کاملAsymptotic Bounds for Spectral Bands of Periodic Schrödinger Operators
The precise upper and lower bounds for the multiplicity of the spectrum band overlapping are given for the multidimensional periodic Schrödinger operators with rational period lattices. These bounds are based on very recent results on the lattice point problem. §1. Main result 1.
متن کاملEigenfunction expansion in the singular case for q-Sturm-Liouville operators
In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
متن کاملSpectral Properties of a Class of Reflectionless Schrödinger Operators
We prove that one-dimensional reflectionless Schrödinger operators with spectrum a homogeneous set in the sense of Carleson, belonging to the class introduced by Sodin and Yuditskii, have purely absolutely continuous spectra. This class includes all earlier examples of reflectionless almost periodic Schrödinger operators. In addition, we construct examples of reflectionless Schrödinger operator...
متن کامل